RAPID: A Robust and (Semi) Autonomous Platform for Increased Distances

© GMV Property - 18/10/23 - All rights reserved

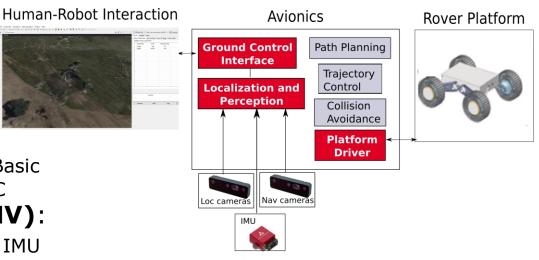
Index

- RAPID: Introduction and concept
- Challenges
- Tests performed
- Conclusions

RAPID Intro & Concept

RAPID: Objectives and Problem areas

- Core Objective of the activity:
- "The development of a semi-autonomous rover capable of traversing safely lunar areas at an average speed of 1.0 m/s, using a semiautonomous GNC system based on visual navigation"
- The rover shall be able to be tele commanded from an HRI (ground station)
- The HRI shall use MMI technology suitable for in-space tele-operation
- Shall be tested in an analog to the Lunar Mare area

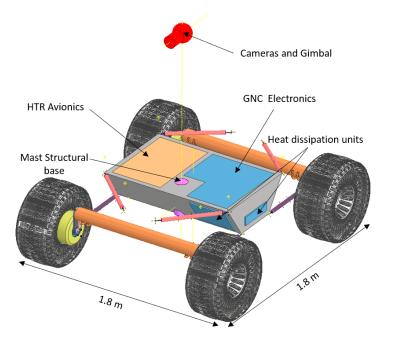

We identified a set of potential problem areas like:

- Locomotion and suspension
- A GNC for continuous driving
- HRI Challenges: Tele-manipulation and semi-autonomous modes-
- Scaling the results to a Moon mission

Concept and Consortium

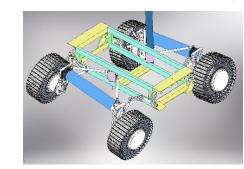
- GMV as main integrator
- **Rover platform** with flexible wheels and skid system (**HTR**)
- Avionics containing:
 - Motion Control: (HTR) Basic motor's control/odometry via OBC
 - GNC avionics & SW (GMV):
 - Dedicated computer, cameras, IMU
 - Perception and localisation part based on SPARTAN (GMV)
 - Guidance and control based on ESA-PRL Github repository (**UMA**)
- **HRI** we rely on the CLEAR developments as well as the SW implemented in 3DROCS (**NRB**).

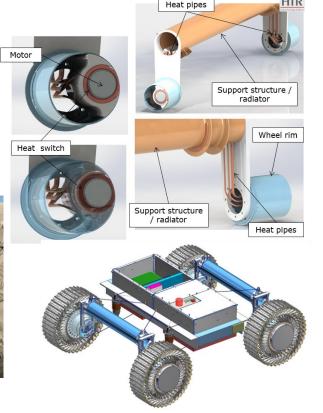
RAPID Rover platform challenges



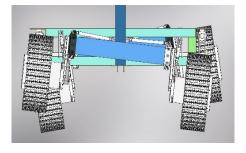
© GMV Property - 18/10/23 - All rights reserved

Challenges for the rover platform: Rover dimensions and scalability


Baseline (Lunar): 300Kg, 1.8x1.8m Baseline (Terrestrial): 60 kg, 1x1m



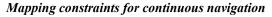
Challenges for rover platform: wheel, suspension & thermal management



HTR

gn

RAPID GNC challenges

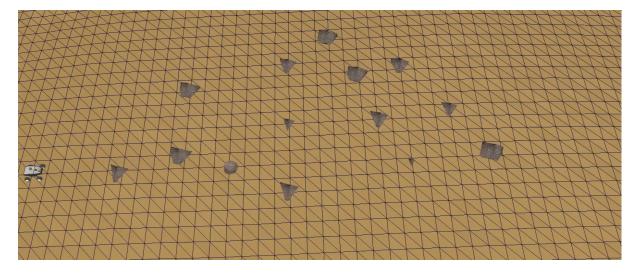


© GMV Property – 18/10/23 - All rights reserved

Challenges: Continuous localization and perception

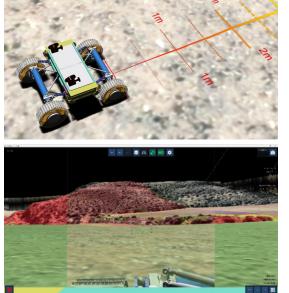
- Ad hoc solution using SPARTAN (Space Performance and Robust Terrain Awareness Network)
- Camera selection
 - Compact solution with a ~75 mm. baseline was adopted for both NavCams and LocCams
- Continuous Localization Visual Odometry (VO)
 - Sufficient frequency
 - Positioning of the LocCams is critical
 - >70% image overlap between consecutive frames
 - Installed on the chassis to minimize vibrations
 - Tilt orientation was fine-tuned
- Continuous Perception
 - Abrupt Orientation changes/Mechanical Vibrations
 - **Gimbal** to maintain a fixed orientation w.r.t. its axis of rotation
 - Gimbal + NavCams installed on an arc, i.e. instead of a mast
 - Stereo Mapping
 - **DEMs up to 6 m** in front of the rover
 - Nearest ~2 m. is not mapped
 - the distance traversed at full speed during the computation of the overall control loop plus a safety margin.
 - Far Obstacle detection
 - **Identifying rocks and subsidence** on the lunar surface from monocular images.
 - Proactively anticipate potential obstacles in the rover's path.

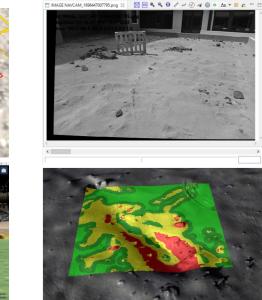
Challenges: Continuous Guidance


- Global Path planning:

- Based on orbital imagery.
- Far obstacles avoidance.
- Local Path Planning
 - Local path repairing

- Trajectory controller:
 - C-pursuit.
 - Guarantee a safe corridor.


- Locomotion control:

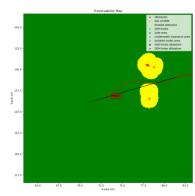

- Skid-steering adaptation.
- Ackermann compatible.

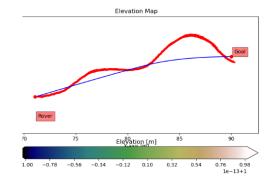
Challenges: HRI

- 3DROCS Instantiation for RAPID
- A New Touch Screen MMI that combines telemanipulation with interactive autonomy
- Telemanipulation with external devices
- Ground-interface running onboard for TC/TM
- HK Telemetry
- Images
- Point Clouds/DEM

RAPID Tests Performed

 \odot GMV Property – 18/10/23 - All rights reserved


Field tests


Test Set	Goal	Status
Rover Basic Tests	Verify Basic Health, GPS, Direct Commanding	ОК
Localization and Mapping Tests	Verify Localization and mapping using Cameras DEM / GT /Spartan	Not completed
Obstacle Avoidance and path planning/ traversability Tests	Guidance	Not completed
Ground Station Test Cases	Monitor telemetry, Displays, Sit awareness, Synoptic, Rehearse, Annotation, Teleoperation, Joystick Mngment	ОК

Extended test campaign

- Aimed to fix those problems found during the field tests. These involve:
 - Guidance and far obstacle detection
 - Spartan fine tuning
- We will gather performance parameters and determine the results at different speeds (0.3 m/s 0.7 m/s, 1.0 m/s)

Conclusions

© GMV Property – 18/10/23 - All rights reserved

Conclusions

- RAPID is a newly developed rover platform capable of performing traverses at high speeds.
- The combination of its **chassis, suspension and gimbal provides a stable platform,** reducing the mechanical vibrations of the cameras so that valid point clouds and DEMS can be generated even at high speed in harsh terrain ("Luna Mare")
- Its GNC is designed to avoid the "stop and go" paradigm, increasing average speeds
- A complete HRI has been developed for the rover, with new features (f.i. the possibility to telecommand it from Earth/International Space Station)
- Tests **demonstrated the capability of the rover platform to run at 1.2 m/s** while telemanipulated.
- Guidance uses a local/global path planning strategy and is able to replan the trajectory avoiding the stop/go and successfully overcome obstacles at 0.3, 0.5 m/s
- **RAPID is not finished and is facing its extended test campaign**: a final assessment for both perception and localization and guidance capabilities will emerge from the extended tests

gmv.com

Thank You

Jorge Ocón jocon@gmv.com

© GMV Property - 18/10/23 - All rights reserved